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SOLUTION TO THE COMPRESSIBLE NAVIER-STOKES EQUATIONS 
OF MOTION BY CHEBYSHEV POLYNOMIALS WITH 

IMPLICIT TIME STEPPING 

1. INTRODUCTION 

Gottlieb et. al. (reference 1) applied pseudospectral methods to the solution 
of the one dimensional propagating shock wave problem. They utiHzed a low pass 
spectral filter which they developed together with a Shuman filter, applied to the flow 
on either side of the shock wave but not across the shock front itself. The shock 
location was determined by examination of the spectral coefficients. Since then, the 
present author has developed new techniques for use with pseudospectral methods 
which have greatly increased their utility in solving inviscid flows with single or multiple 
discontinuities. Pseudospectral methods have been used by the author to solve many 
classes of complicated time dependent compressible flows using the full Euler equations 
of motion (references 2 through 6). Results have shown that flow discontinuities such as 
shock waves or contact surfaces are properly resolved as sharp discontinuities. Solutions 
for transonic airfoil flows at subcritical and supercritical conditions (reference 6) were 
obtained more recently and proved that full pseudospectral computational methods 
could also successfully treat compressible inviscid flows about non-planar geometries. 
With the completion of the airfoil work, the author has shown that pseodospectral 
computational methods are fully suitable for solving many classes of inviscid, time 
dependent, compressible flows using the Euler equations of motion. 

The next logical step is to turn to the full viscous equations of motion namely, the 
Navier-Stokes equations. Orszag is the most notable in the fleld when one considers 
stabihty and transition analyses of incompressible hydrodynamic boundary laver and 
channel flows (reference 7 for example). He was the first to apply pseudospectral 
methods, treating flow stability problems for laminar hydrodynamic boundary layers 
However, no work has as yet been done for compressible flows. Even when one considers 
the solution to compressible external flows, pseudospectral methods have not been used 
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at all due to difficulties in resolving discontinuities. The author showed in reference 8 
that the time dependent, compressible, full Navier-Stokes equations of motion could be 
solved using full pseudospectral methods. In that, work, a laminar, oblique shock wave 
boundary layer interaction flow on a flat plate in a supersonic free stream was computed. 
The shock waves were maintained as sharp discontinuities and the separation zone was 
obtained. The spatial extent of the separation zone as well as the plateau pressure 
agreed well with experimental data. The only drawback was the amount of CPU time 
required to obtain convergence. With explicit time stepping, and a Courant number 
of 2.5 based on the minimum time step allowable in the entire computational domain, 
five hoturs of CRAY-XMP/12 time (25,000 time steps) were required. 

To remedy this unacceptably large machine time requirement, an implicit time 
stepping procedure was incorporated into the code. This report presents results ob- 
tained with the implicit time stepping version of the code developed in reference 8. 

2. GOVERNING EQUATIONS 

The full two-dimensional, time dependent, compressible Navier-Stokes equat 
of motion cast in conservation law form are shown below. 

ions 
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dt ^ dx"^ dy ~   ' 

where U , E and F are vectors whose elements are: 
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where (TX ,cry axe the normcil stresses,r^j, and Tyx axe the shear stresses, A and /i are 
viscosity coefficients (Sutherland's relation is used since the present work deals with 
laminar flow) and K is the coefficient of thermal conductivity. The pressure is obtained 
from the following 

(7-1) ^=7r3T) + 2^("   +^^)' , (2e) 

The physical flow variables are non-dimensionalized in the following manner. 

P = 
PiUl 

P\ 

y R) 

V 

The normal and shear stress terms are non-dimensionahzed by the free stream 
pressure head, (piU^) . Subscript one denotes free stream properties upstream of the 



incident shock wave.   With respect to non-dimensional flow variables, equation one 
becomes: 
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with the Prandtl number Pr defined by, 

Pr = 
fiCp 

(4e) 

This completes the non-dimensionalization of the physical flow variables and the 
conversion of the Navier Stokes equations to non-dimensional physical flow variables. 
However, it still remains to transform these equations into a suitable computational 
space. This is discussed below. Several coordinate transformations are applied to 
generate an appropriate distribution of points in the flow fleld. Appropriate here means 
many points-in regions of large gradients and simultaneously few points in regions of 
small gradients. The final computational coordinates are obtained using a sequence of 
four coordinate transformations. Namely, 
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The terms Ci, C3, Ax,Ay and , a are transformation clustering constants which 
aifect the distribution of points in the computational and physical domains. The final 
form of the Navier Stokes equations becomes, 

Ut + E^ + F;^ + H = 0 (8) 

where 

U = U 

E = El, 

F = EC^l. + FC.rjy 

H = -Eilx)^ ~ [^(Q6)^ + F{Cr,fjy)^] 

All spatial derivatives appearing in equation 8 axe calculated by pseudospectral 
means. In the present work this involves the use of chebyshev polynomials. The time 
derivative Ut appearing in equation 8 is evaluated using finite diiferences. Specifically, 
the Adams Bashforth algorithm is used. The resultant difference form of equation 8 is 
given by, 

fjt+st _frt,^c.rdE^     l..rdE,^ ** , 3,^;dF,t     l.rdF,,  ..      ~, 
U       -U + -8t[^] - -8t[^]       + -St[^Y - s-^^t 5f ]       - ^' + A-,    (9) 

The term Dij is an artificial viscosity. In the present work fourth order artifi- 
cial viscosity is utiUzed in x and second order in y. They are computed using finite 
differences. The finite difference representations are shown below. 

A,>=^x+y"j, ^ (10) 



where 

The terms Dx and Dy axe smoothing constants. 

3. PSEUDOSPECTRAL METHODS 

Pseudospectral solution techniques involve the use of series of functions to represent 
the global properties of a flow field and its spatial derivatives. In the present work 
Chebyshev polynomials are used. They are represented by T„(x) where 

Tn{x) = cos [narccos (x)] (n) 

or 

Tn(^) = cos [n^] (12a) 

where s 

^ = arccos(x) (126) 

A function of a single spatial variable and time such as F(x,t) may be represented 

N 

F{x,t) = ^Ar.it)Tnix) (13) 
n=0 

The time dependence is represented entirely in the spectral coefficients A„(i) while, 
the spatial dependence is represented in the Chebyshev polynomials Tn(x). The Cheby- 
shev polynomials are evaluated at discrete points Xj where 

as 



^i = cos[-^] (14) 

where Nx is the total number of modes used to represent the spatial variation of 
the function F(x,t). The spatial derivative of the function F(x,t) is represented as 

^^ = g^„(,)a)i.„(.,) (15,) 
n=0 

where 

2     ^' 
Aj'\t) = ^ E PMi) (156) 

and 

p + n = odd 

Co = 2 

Cn>0 = 1 

The An's are determined from equation thirteen. Inverse FFT's are used to obtain 
the An's from the known functional values F(x,t) at the known collocation points Xj. 
The spectral coefficients of the spatial derivative , A„^^^ , are determined from the 
recurrence relation equation 15b. Direct FFT's are used to evaluate the sum in equation 
thirteen to obtain the functional values at t+6t. The low pass spectral filter developed 
by Gottheb at ICASE is used to damp spectral oscillations. It is shown below. 

e-"^^ (16) 
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where K is the spectral wavenumber and A'max is the maximum wavenumber 
corresponding to the total number of collocation points. 

4. IMPLICIT TIME STEPPING ALGORITHM 

Many algorithms exist to implicitly solve the Navier-Stokes equations of motion. 
Most however, are not suitable for incorporation into a pseudospectral code. The 
reason is that most rely on replacing various finite difference terms on the right hand 
side (ie the spatial discretization side) with their equivalent evaluated at the (n+l)'th 
time step. Then, all the terms in the finite difference representation of the governing 
diiferential equation which are evaluated at the (n+l)'th time step are brought to 
the left hand side of the equation. The resulting form of the difference equations has 
all (n+l)'th terms on the left hand side and all lower terms (ie n'th, n-l'st etc.) on 
the right. The solution is advanced in time by applying a matrix inversion to the 
left hand side. This procedure is not appHcable herein because the spectral solver is 
global in nature. Spatial derivatives are evaluated row-by-row or column-by-column 
(x,y directions respectively) in one operation. 

What is required therefore is an implicit procedure that involves the time derivative 
terms only since, they are evaluated using finite differences. The implicit procedure 
developed by MacCormack (reference 9) does this. It is utiHzed herein. A brief outline 
of MacCormack's procedure will be given below. The reader is directed to reference 9 
for a more detailed description. 

MacCormack's algorithm is a two step predictor-corrector scheme. Each step (pre- 
dictor or corrector) involves the evaluation of a first order accurate in time solution fiux 
or change, followed by an impHcit step which in principle is stable for any time step size 
( needless to say this in practice means an upper bound for the CFL condition of about 
20 for laminar flows). This first fiux calculation will be referred to herein as the first 
level flux calculation. In the present work it is calculated using the Adams-Bashforth 
second order accurate flnite difference time stepping algorithm together with the spec- 
tral evaluation of all spatial derivatives. Only the predictor step is used herein since 
the time stepping algorithm is second order accurate and the spatial spectral algorithm 
is of order accurate equal to the number of modes used to represent the flow. Previous 
work by the author using spectral predictors and correctors has shown that there is 
essentially nothing gained by including the corrector step. The CPU time spent on the 
corrector i's wasted time. 

MacCormack's algorithm is shown below. 

(I-AtA,^)(/-AtA,^),^«=jn_ (IT) 



Where the dot operator acts on all terms to its right. A and B are matrices which 
are themselves products of three other matrices. The symbol A+ denotes the forward 
index finite difference operator. Equation 17 is solved in the following manner. The 
right hand side is obtained from the Adams-Bashforth spectral scheme. Defining the 
term F2 as, 

^2-,=(^-AiA+^)F3,. (18) 

where 

^.>=<^^ir^       - . ,      (19) 

Equation 17 may be written as 

(/-AiA+^)i^,^=i^_^ :,;  (20) 

The procedure for solving equation 20 is to use the results of the spectral step, F^. 
,aiid obtain F^.. by inverting the coefficient matrix on the left hand side of equation 
20. Once the values of F^. . are obtained, then a matrix inversion is applied to equation 
18 to obtain the values of Fz,.. Then,the solution at t+dt is obtained as 

t/^r >=cpv+i^,, (21) 

which completes the procedure for one time step. 

The algorithm includes the utiHzation of a y-direction artificial viscosity term 
whose magnitude is proportional to the solution fluxes. It is shown below in equation 
22. 
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This term is required to maintain stability of the implicit scheme in the early 
stages of the calculation where the fluxes are impulsively large. As the solution reaches 
convergence, the numerator of equation 22 reaches zero (or some small non-zero residual 
value) and the dissipation term effectively drops out. 

The implicit part of the overall procedure is the calculation of the F2 and F3 vec- 
tors. To evaluate these quantities at all grid points would yield a fully impUcit procedure 
that wotild not be the most efficient. For any given value of explicit Courant number, 
there result values of explicit time step size at each of the grid points in the computa- 
tional domain. This is due to the variation of eigenvalues, grid spacing and kinematic 
viscosity coefficient in the computational field. These parameters change from grid 
point to grid point as well as from iteration to iteration. The expHcit procedure alone 
would of course use the global minimimi value for the entire field. The implicit proce- 
dure is implemented by specifying either an impHcit courant number (greater than 1.0) 
or an impUcit time step size dti whose value is at least larger than the exphcit time step 
size. The explicit time step size varies over the entire computational domain from some 
global minimtmi to some global maximum say, dti to dt2. The degree of impUcitness 
of the procedure is related to the magnitude of dti relative to dti and dt2. If dti is less 
than dti then the implicit procedure is bypassed and a fully explicit scheme results. If 
dti is greater than dt2 then the imphcit procedure is appHed at all points and a fully 
impHcit scheme results. In practice, dti is chosen to he between dti and dt2. At points 
where dti is less than dt2 the impHcit procedure is bypassed while, at points where dt, 
is greater than dti the imphcit procedure is apphed. Since the smallest field values 
of exphcit time step size result from the concentration of grid points in the boundary 
layer, dti is selected so that these points are treated imphcitly while others, which are 
outside of the boundary layer, are treated expHcitly. 

5. BOUNDARY CONDITIONS AND TIME STEP SIZE 

Both subsonic and supersonic free stream flows are treated in the present work. 
The type of boundary condition employed depends upon the nature of the flow namely, 
subsonic or supersonic. For subsonic flow, characteristc boundary conditions are em- 
ployed at both inflow and outflow boundaries. At subsonic inflow boundaries the static 
pressure and axial velocity are held fixed while at subsonic outflow boundaries the 
static pressure is held fixed. The remaining physical quantities are calculated from 
these fixed quantities together with the values of the characteristics. Along the upper 
computational boundary, flow variables are held fixed at free stream values since the 
boundary is placed far enough away from the body so that no disturbances propagate 
there. 

^ For supersonic flow problems, the inflow boundary conditions are to keep all flow 
variables fixed.   Along the upper boundary flow variables were held fixed at either 
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free stream or post-shock values depending on the problem being treated. At the 
outflow boundary, conditions at each point were set to those at the next upstream 
point (zero'th order extrapolation) throughout the calculation. Along the bottom of 
the computational boundary either a plane of symmetry or wall surface was present. 
Reflective boundary conditions were used at points ahead of and behind the body being 
treated, namely u,-,i = u,-,2. On the body surface,u,-,i = -Ui,2- Also, along the entire 
bottom boundary u,-,i = -Vi,2, Pi,i = Pi,2 and ei,i = ei,2, with e denoting specific 
internal energy. This last condition being appHed along the body surface since all cases 
treated are for an adiabatic wall. 

The time step size was determined from the following. 

"< = 'M^TTft 1 (23.) 

^^^- = [^7^^] (23.) 

6t = [St^,6t^]^.^ (23c) 

Where a^ and a^ are the eigenvalues in the computational space at each of the 
grid points. 

For the results presented herein, equation 23 was utilized in the following manner. 
First, a value of explicit courant number was selected. Then, equation 23 was used to 
determine the resulting time step sizes at each of the grid points. These values were 
then stored in an array. As previously mentioned the impHcit procedure was used by 
either specifying an implicit courant number and calculating the resulting impUcit time 
step size as the product of the impHcit courant number and the global minimum value 
of explicit time step size (adjusted to reflect an explicit courant number of one) or 
of specifying the impHcit time step size directly. In the former method, the impHcit 
time step size is allowed to vary from time step to time step, subject to the constraint 
that the impHcit courant number is held fixed. While the latter method, by fixing the 
impHcit time step size, varies the impHcit courant number according to the variation of 
the eigenvalues at the grid points. Note that whether or not the impHcit procedure is 
employed, the value of time step size actually used in equations 17 through 21 at each 
grid point is the impHcit value. That value is either a constant which changes after 
each iteration (when the impHcit courant ntunber is specified) or is a constant which 
is held fixed throughout the entire computation (when the impHcit time step size is 
specified directly). 

12 
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Regardless of which approach was utilized, the test used in reference 9 was used 
here also. At each grid point, the values of the imphcit time step size and explicit 
time step size for that point are compared. For points where the exphcit time step 
size is greater than the implicit time step size the F2 and F3 calculations are bypassed. 
However, for points where the implicit time step size is greater than the explicit time 
step size (remember that the explicit time step size is different at each grid point) the 
F2 and F3 calculations are performed. 

6. RESULTS 

Three types of flow problems have been treated in the present work. The first is a 
normal shock wave laminar boundary layer interaction flow. The second is a laminar, 
obHque shock wave boundary layer interaction flow. The third is the laminar flow over 
a biconvex airfoil at several subsonic free stream mach numbers. Results for each flow 
will be discussed below. 

The first problem treated is a normal shock wave propagating into a supersonic 
freestream.    The shock mach number is 4.0 with respect to the ground.    The free 
stream mach number is 2.0 with respect to the ground. The body over which the shock 
propagates is a flat plate. The shock wave is made stationary with respect to the flat 
plate by applying a velocity transformation to the entire flow.   That transformation 
consists of adding the negative value of the shock propagation velocity to the shock 
front and the fluid flow in front of and behind the shock wave.  The resulting inflow 
is supersonic at a mach number of 2.0 with the outflow also being supersonic.   The 
position of the shock wave is chosen to be at x=0.0. The extent of the computational 
domain is -1.0 foot < x < +1.0 foot and 0.0 foot < y < 0.30 foot.   The extent of 
the flat plate is x=-0.5 foot to x=+1.0 foot.   Solutions for grid resolutions of 64x16 
and 64x32 (x and y directions respectively) were obtained.   Points were clustered in 
the neighborhood of the plate surface to resolve the large gradients present. For these 
results, the imphcit courant number was specified at 2.0. The exphcit courant number 
was 0.9. The free stream unit Reynolds number was purposely selected to be small in 
order to minimize the number of grid points required to adequately resolve the total 
flow field.   It was 300,000 per foot.   This problem was selected to serve as a test to 
check out the implicit code. 

Results for the 64x16 resolution run are shown in figures 1 through 7 These results 
were obtained in 800 iterations. The code required 0.25 cpu seconds per iteration or 
0.23 X 10 cpu seconds per iteration per grid point. The total cpu time required for 
the jun was 200 seconds on the NRL CRAY-XMP/24. Figures 1 through 4 show full 
field contour plots of pressure, velocity vector magnitude,mass flow per unit area and 
mach number. The sonic Hne is shown by the dotted Hne. The computational grid used 
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in this run is shown in figure 5 where constant coordinate grid lines are shown. The 
shock wave is alHgned along constant x coordinate lines. In the vicinity of the shock 
wave-surface intercept, grid points are essentially evenly spaced with the point spacing 
increasing as the inflow and outflow boundaries are reached. The shock wave is resolved 
sharply within two to three cells. There is also a small separation bubble present for 
this case, which is readily apparent in figures two and three. The resulting surface 
pressure distribution ,non-dimensionalized with respect to the free stream pressure, is 
shown in figure 6. The extent of the separation zone is -.125 foot to +.125 foot. The 
sudden jimip in pressure in the vicinity of the leading edge, at x=-.5 foot, is due to 
the lack of resolution of the boundary layer at the leading edge and to the change in 
boundary condition of the axial velocity. The axial velocity goes from a value of about 
1.0 just off the leading edge to essentially zero at the first point on the flat plate surface. 
The flow responds to this condition by putting a weak shock or compression fan at the 
leading edge in order to provide the physical mechanism to slow the flow down. This is 
clearly evident in the pressure contour plot where there are several pressure contours at 
the leading edge of the plate. A plot of the residual time history of the density is shown 
in figure 7. The log of the maximum density residual at each iteration is plotted versus 
the iteration count. The spikes which are present at iteration counts of 200, 400 and 
600 are the result of program restarts at these iterations. The code was run 800 steps 
in increments of 200. The physical flow variables were stored with the conservative 
variables being recalculated at each restart. Further, the implicit courant number of 
2.0 easily magnifles any initial inaccuracies which are present at restart due to the 
recalculation of the conservative variables. The log of the density residual has reached 
-3.5 at the 800th time step. The calculation was stopped here because there was no 
appreciable change in the surface pressure distribution or the extent of the separation 
zone. 

This same flow was re-run with the grid resolution doubled in the y-direction. 
Grid resolution of 64x32 versus 64x16 above was used. Results are shown in figures 8 
through 14. This run required 0.46 cpu second per iteration or 0.22 x 10"^ cpu second 
per iteration per point. Convergence was reached at 3200 iterations which required 
1470 cpu seconds or a little over 24 minutes. The implicit courant number was 2.0 
as in the case above. The only difference between these two cases is the number of 
chebyshev modes used in the y-direction. At convergence the value of the time step 
size for the case above was 0.60 x 10"^ while for this case it was 0.17 x 10"^. Taking the 
ratio of these two and multiplying by 800 yields 2823 iterations required to reach the 
same integration time as the above case at the larger time step size. The actual number 
of 3200 is very close to this number which takes into account the effect of the more 
densely packed grid points in this run. This is clearly evident if one compares figures 
5 and 12 in which the constant coordinated grid fines are plotted. Figure 13 shows 
the surface pressure distribution for this run. The extent of the separation bubble is 
almost the same as the lower resolution run. The surface pressure values upstream and 
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downstream of the separation bubble are closer to the respective pre- and post-shock 
values because of the increased point resolution in the y-direction. Figure 14 shows the 
residual time history. The log of the density residual has essentially plateaued at -4.0. 

Based on these two calculations it is clearly better to have run the coarse case first 
then, after interpolation, to have continued the solution with the higher grid resolution. 
Work using this kind of approach as well as multigrid like approaches is being presently 
undertaken. It was purposely not done here because the intent of this work was to show 
the reults of incorporating the impHcit scheme into the pseudospectral code and the 
utility of pseudospectral computational methods developed in references 2 through 6 
and 8 for full, time dependent, compressible, Navier-Stokes calculations. 

The second case run was a laminar oblique shock wave boundary layer interaction. 
This case was selected because it had previously been run with the exphcit code (ref- 
erence 8). Further, experimental data (reference 10) is available for comparison. The 
free stream Mach number is 2.05. The free stream unit Reynolds number is 695,000 
per foot. Sixty four chebyshev modes are used to model the flow in the x and y direc- 
tions. A six degree wedge is the obHque shock wave generator. The shock wave enters 
the computational domain at the left hand side ( supersonic inflow ) boundary. The 
inviscid reflected shock wave exits the right hand (supersonic outflow) boundary. The 
upper computational boundary was positioned far enough above the flat plate surface 
to ensTire this. At this grid resolution the implicit code required 0.81 cpu second per 
iteration of CRAY-XMP/24 time. This is equivalent to 0.192 x lO'^ cpu second per 
iteration per grid point. As a comparison, the explicit code required 0.74 cpu second 
per iteration at the same grid resolution. The exphcit code required a httle over five 
cpu hours of machine time for convergence while the implicit code required 2.7 hours 
with the impUcit courant number specified and 2.47 hours with the imphcit time step 
size specified. The iteration count was 12,000 and 11,000 respectively. From the point 
of view of computer resources alone, the impHcit procedure indeed is a success, reduc- 
ing the computer time of five hours to two and a half hours. The effect of the implicit 
procedure on the solution will be discussed below. 

Resiilts for the case where the impUcit courant number was specified are shown in 
figures 15 through 40. Constant coordinate grid fines are shown in figures 15 through 17. 
The full computational field, -.2 < x < +.2 foot, 0.0 < y < 0.3 foot is shown in figure 
15. The clustering of points at the plate surface is clearly evident. Figures 16 and 17 
show the region of the wall expanded in the y-direction. Figure 16 shows 0.0 < y < 0.08 
foot and figure 17 shows 0.0 < y < 0.01 foot. These ranges are used in the other figures 
and are shown here so one can visualize the number of points that go together with each 
figure. The grid points are essentially evenly spaced in the x-direction. Contour plots of 
the pressure field are shown in figures 18 and 19. Figure 18 is the full field and figure 19 
is a blowup of the region 0.0 < y < 0.08 foot. The incident shock is clearly evident and 
is represented as a sharp discontinuity even though the computational coordinates are 
not shock alligned. The inviscidly reflected shock wave has spht into two weak shocks 
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or compression fans. The third arises from the recompression as the flow re-attaches 
to the flat plate. Figures 20 through 22 show details of the separation bubble through 
contours of velocity vector magnitude, unit mass flow and mach number. The sonic 
line is shown plotted as the dotted line. The surface pressure distribution is shown 
in figure 23. In that figure the square symbols denote the numerical solution and the 
triangle symbols the experimental data of reference 10. 

The residual time history of the solution is shown in figure 24. The high frequency 
oscillations which axe present over the first two thousand time steps are due to the value 
of impUcit courant number chosen. The calculation was started with an implicit courant 
nvmiber of 4.0. This was maintained over the first thousand time steps. The oscillations 
represent noise which arises from the chebyshev polynomials and does not represent 
an instabiUty. It is typical of pseudospectral chebyshev solutions to display this type 
of behavior though of course in practice the courant numbers used are chosen small 
enough so as to effectively remove these oscillations by minimizing their amplitude. The 
solution was kept because the large values of residuals means that solution changes are 
propagating quickly into the field. The courant number was then reduced to three and 
finally to 2.0 at the start of the 1800'th iteration. From the 1800'th to the final iteration 
the impUcit courant number was held at 2.0. As mentioned before, the spikes in the 
plot arise at solution restarts. The log of the density residual reaches -3.5 at about 
the 9000'th iteration and rises slightly to about -3.2 at the final or 12,000'th iteration. 
The reason for this rise is that the dissipation constants were reduced towards the 
end of the calculation to try to minimize the effects of the artificial viscosity on the 
solution. Field profiles of the physical variables at x=0.025 foot, roughly the middle 
of the separation bubble, are shown in figures 25 through 40. There are 10 points in 
the y-direction spanning the separation bubble from the surface to the bottom of the 
separated shear layer. The soUd vertical line in each plot is the free stream value of 
the physical flow variable which appears in the plot. This was put in to allow one to. 
directly compare each of the profiles in the viscous layer with the respective free stream 
values. It is seen from figures 25 through 27 that the profiles are smooth and that no 
spectral oscillations are present. By looking at figures 25 and 27 the vertical extent of 
the separation bubble is approximately 0.0034 foot. Note that this is only one percent 
of the ftdl vertical extent of the computational boundary. Further, the x location of 
these profiles is at the maximum vertical extent of the separation zone so that the 
remainder of the separation bubble must be resolved in a zone much less than this one 
percent value. The velocity profile which is shown in figure 26 is smooth, with flow 
reversal posing no particular computational difficulty. Flow reversal is present from 
the plate stirface to a value of y just over 0.0025 foot. The extent of the flow reversal 
zone is also confirmed by looking at figure 28 where the unit mass flow rate profile is 
plotted. Figures 29 through 32 show the same profile plots over a further extended 
range, 0.0 < y < 0.08 foot. These figures provide a better perspective of the size of 
the separation zone with respect to the full field.   Plots of these profiles over the full 
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vertical extent of the computational domain are shown in figures 33 through 36. No 
oscillations are present at the upper boundary region. The separation zone is no longer 
distinguishable in these full field plots because it is just too small given the scale of the 
plots. However, the shear layer is clearly visible as are the compression fans. Full field 
(in the flow direction) profiles of density, velocity vector magnitude, energy and unit 
mass flow rate are shown in figures 37 through 40. The vertical extent of the figures is 
from the wall to y=0.01 foot. These figures give a better perspective of the numerical 
solution over the full plate surface. 

Figures 41 through 63 show similar plots for the other impHcit run. In this run, the 
implicit time step size was held fixed throughout the computation. Based on an exphcit 
courant number of 0.9, the resulting expHcit time step size is 0.22 x IQ-* at the start 
of the computation and 0.33 x 10"^ at the end. The impHcit time step size was held 
fixed at a value of 0.80 x lO"'^. This corresponds to imphcit courant numbers of 3.21 
and 2.18 respectively. The maximum value was about 5.0 early on in the calculation. 
The contour plots shown in figures 41 through 45 are essentially the same as those of 
figures 18 through 22 which are results obtained with the implicit code utiHzed with 
constant imphcit courant number. Comparing the 0.0 < y < 0.01 foot profile plots of 
the two impHcit solutions (figures 56 through 59, figures 25 through 28), the following 
is apparent. The vertical extent of the separation zone is the same. Surface values of 
density and energy are also the same as are the profiles in the separation zone. Velocity 
and unit mass flow profiles are the same through the separation zone.  Differences do 
arise in the shear layer which hes just above the separation bubble. Profiles of the fixed 
time step size run are stretched out higher in the y direction than the fixed courant 
number profiles. This result is also apparent by comparing figures 52 through 55 with 
those of figures 29 through 32.   The maximum values of energy and unit mass fiow 
on the profiles are however the same for both solutions in this vertical range off the 
plate. Comparing the full field profiles, figures 48 through 51 with figures 33 through 
36 the vertical extent of the entire viscous layer (separation and shear zones) ranges 
through a y value of 0.10 foot for both imphcit solutions. This is one third of the full 
vertical extent of the computational domain. The peak value of energy reached in the 
viscous layer is shghtly larger for the fixed time step size run. The axial velocity profiles 
are essentiaUy the same as are the unit mass flow profiles.  As previously mentioned 
differences do exist in the density profiles in the lower portion of the shear layer just 
above the separation zone. The peak values of density in the viscous laver are 1 57 for 
the fixed courant number run and 1.55 for the fixed time step size run.' 

Some graphical results of reference 8 (exphcit code) are shown in figures 64 through 
69 for comparison. The magnitude of the artificial smoothing required for stabihty was 
much less m the imphcit code than in the expHcit code. The magnitude of the fourth 
order smoothing constant for the x-direction being 0.03 and 0.002 for the explicit and 

'"^^nnn^ff" respectively. For the y-direction the exphcit code smoothing constant 
was 0.0013 for a fourth order scheme. It was necessary to use a second order scheme for 
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the implicit code in the y-direction. The smoothing constant was 0.0007. The overall 
effect of this can be seen by comparing figures 18, 41 and 64. The three plots are 
grouped together in Figure 70 for ease of comparison. These are the full field pressure 
contours of the implicit solutions and the previously obtained explicit solution. The 
shocks in the explicit solution are a little more smeared than those of the implicit 
solutions. This effect is also evident in the separation bubble whose surface extent 
is somewhat larger in the explicit calculation than in the implicit calculations. The 
resulting surface pressure distributions axe grouped together for ease of comparison in 
figtire 71. In figure 71 the square symbols are the numerical solution results and the 
triangle symbols are the experimental data of reference 10. The mach number contour 
plots are grouped together in figure 72. 

The order of the three surface pressure plots in figure 71 is the fixed courant number 
explicit code run (top figure), fixed implicit courant number implicit code run (middle 
figure) and the fixed time step size implicit code run ( bottom figure). When comparing 
the plateau pressures the best results are obtained with the explicit code. The explicit 
code gives a value of about 1.28 as compared to the experimental value of 1.25. The 
fixed courant mmiber implicit run gives 1.37 while the fixed time step size implicit rtin 
gives 1.34. In terms of percentages this becomes 2.4,9.6 and 7.2 percent respectively 
above the experimentally measured value. In terms of the extent of the separation 
bubble on the plate surface, all three give essentially the same recompression point 
locations. However, while the fixed courant number implicit run and the explicit code 
run give similar locations for the separation point ( x = -.05 foot ) the fixed time step 
size impUcit nin yields a separation point of x=-.0375 foot. Based on the experimental 
surface pressure distribution, the separation point Hes somewhere between -0.05 and 
-0.0375. 

The mach number contour results of the three cases are shown in figure 72. The 
three solutions are essentially the same. However, as discussed above, there are some 
differences in the size of the separation bubble. The sonic hnes of the impHcit code runs 
are very similar, with differences arising in the region behind the reattachment point. 
The fixed courant number case Une at a position higher off the plate surface than the 
fixed time step size impHcit run. The fixed time step size result more closely matches 
the explicit code result. 

The third and final flowfield computed in the present work is the subcritical and 
supercritical flow over a circular arc airfoil of five percent half thickness ratio. Free 
stream mach ntnnbers were 0.70 and 0.84 respectively. These cases were previously run 
using the pseudospectral euler code that the present author reported on in reference 
6. For the euler solution the flow over the airfoil was supercritical at the free stream 
mach number of 0.84. 

The subcritical case was the first airfoil case to be run using a full pseudospectral 
Navier-Stokes code, the impHcit code in this case. The impHcit time step size was held 
fixed at 0.25~3 while the expHcit time step size (based on a courant number of 0.9) was 

18 



0.313 X 10~^. The resulting implicit courant number was about 0.72, meaning that this 
run was actually performed explicitly. This was purposely done to check out the code for 
this first non planar geometry case. MacCormack's y-direction dissipation scheme was 
employed in this run. The grid resolution was 128 modes in the x-direction, clustered 
about the leading and trailing edges, and 32 modes in the y-direction, clustered about 
the airfoil/plane of symmetry surface. This run required 0.88 cpu seconds per iteration 
on the NRL CRAY-XMP/24 computer. At the present grid resolution this works out 
to be 0.207 x 10~^ cpu second per iteration per grid point. Convergence was achieved 
after 5000 time steps, or a machine time of 73 minutes. The free stream mach number 
was 0.70 with the free stream unit Reynolds number specified at 200,000 per foot. 
Again, this low value was chosen specifically to allow the numerical resolution of the 
field with as few modes as possible in the y-direction. Figures 73 through 75 show plots 
of constant computational coordinates. The clustering is readily apparent. Figure 73 
shows the full computational field which ranges in from -5.0 chord lengths to -h5.0 chord 
lengths. The airfoil is centered at x=0.0 with the leading and trailing edges located 
at x=-0.5 and x=-|-0.5 chords respectively. The vertical extent of the computational 
boimdary is two chord lengths. Figures 74 and 75 are enlargements of the area off the 
airfoil/plane of symmetry and extend respectively, 0.5 and 0.2 chord lengths off the 
plane of symmetry. 

Figures 76 through 79 show full field contours of pressure, velocity vector magni- 
tude, imit mass flow rate and mach number. Figures 80 through 83 show enlargements 
of the area in the vicinity of the airfoil surface. Figure 84 shows the pressure contours 
and surface pressure distribution of the euler solution for comparison. It is symmetric 
with respect to the airfoil midchord since the flow is inviscid and the airfoil is symmetric 
about its midchord. The largest difference between the inviscid and viscous solution 
contours is in the midchord to trailing edge region. Figure 85 shows the plot of the 
pressure along the bottom of the computational boundary namely, along the plane of 
symmetry. In comparing the Navier-Stokes and Euler solutions for pressure distribu- 
tion, several differences are clear. The leading edge pressure coefficient is much larger 
for the viscous solution, 1.35 versus 0.55 respectively. The upstream range of influence 
of the airfoil leading edge is about the same for both solutions. The pressure coefficient 
has reached zero at about 1.5 chord lengths in front of the leading edge. The minimum 
pressure coefficient on the airfoil surface occurrs at midchord and is -0.55. While, for 
the Navier-Stokes solution it occurrs at the traiHng edge and is approximately -0.45. 
On the downstream side of the airfoil the inviscid solution decays to free stream within 
about a half chord downstream of the traihng edge. The viscous solution disturbances 
extend to about three chord lengths downstream. Figures 86 an 87 show the plane of 
symmetry mach number and density distributions. The dotted line in figure 86 is at a 
value of mach number equal to the free stream value of 0.70. At 1.5 chord lengths ahead 
of the leading edge the fiow has returned to free stream. The mach number attains a 
value of 0.72 (the density fioats and is calculated from characteristics), sHghtly higher 

19 



than the true free stream value of 0.70. Along the airfoil surface the mach number 
is essentially zero since the numerical values of the flow velocities are essentially zero. 
(Typical values are 1.0 x lO"*, and 1.0 x 10~^ for u and v respectively.) The down- 
stream mach mmiber reaches 0.65 at the outflow boundary. That this is a lower value 
than free stream is to be expected since the mach number is a measure of the total 
pressure in the flow (at constant static pressure). The viscous solution must include 
a loss in total pressure to correspond to the presence of viscous drag. The surface 
density distribution is qualitatively similar to the surface pressure distribution. The 
slight oscillation at the trailing edge is due to the change in surface boundary condition 
that occurrs in going from the last point on the airfoil surface to the first point off the 
airfoil surface. Expanded plots of the above, in the range -1.0<x<+1.0 chord are 
shown in figures 88 through 90. FuU vertical field plots of velocity, energy and unit 
mass flow rate are shown in flgures 91 through 93. The solution is seen to be smooth 
with the effect of the viscous layer clearly evident at the airfoil surface. The residual 
(log density) iteration time history for the run is shown in flgure 94. This run was 
completed in five steps of one thousand iterations each. The log of the density residual 
monotonically decreases to about -4.3 at 3500 iterations where it remains flat through 
the 5000'th iteration. It should be noted that the surface pressure distribution of the 
airfoil only converged in approximately one half of the total iterations, or about 2500. 
The remainder of the work was required to obtain convergence in the field. 

The subcritical run just discussed, which was effectively run fully exphcitly above, 
was re-nm again at fixed imphcit time step size but at an implicit courant number 
greater than one. Once again the expHcit courant number was 0.9, which yielded a 
time step size of 0.314 x 10""*. The impHcit time step size was maintained at 0.6 x lO"-* 
which represented an impUcit courant number of up to 2.25 at the first several hundred 
iterations and a value of 1.72 for the most part thereafter. All other conditions were just 
as those in the case just discussed. Full convergence was obtained in 2500 iterations. 
The case took 0.88 cpu seconds per iteration or 0.207 x lO'^ cpu seconds per point 
per iteration. Total NRL CRAY-XMP/24 cpu time was 37 minutes as compared to 
73 minutes for the implicit code used in full expHcit mode. Figures 95-98 and 99-102 
show full field and expanded field contours of pressure,velocity vector magnitude, unit 
mass flow and mach number. Figures 103 through 105 show full plane of symmetry 
(-5.0 < X < +5.0) and figures 106 through 108 expanded plane of symmetry (-1.0 < 
X < +1.0) plots of the pressure, mach number and density distributions. There are 
clearly differences in the field contours. There are major differences in the flow variables 
along the airfoil surface itself. The mach number distribution on the airfoil surface is 
imiformly larger for the imphcit run (except right at the traihng edge). Since the 
density distributions are similar, the majority of this difference is due to differences 
in the velocity distribution along the surface. The imphcit run yields larger surface 
velocities which translate directly into lower surface pressure values. This can be seen 
directly by comparing Figures 88 and 106.   The surface pressure distribution of the 
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explicit code solution decreases uniformly along the airfoil surface until the trailing 
edge, thereafter recovering. The imphcit code solution has a wide minimum just aft of 
the midchord position, recovering from the three quarter chord point on downstream. 
Figures 109 through 112 show the full field profiles of density, velocity, energy and 
unit mass flow rate. The log density residual time history is shown in Figure 113. 
The log of the residual decreases monotonically to a value of -4.0 (sHghtly larger than 
the -4.3 value for the case where the implicit code was run in explicit mode). The 
artificial smoothing constants were kept the same in both runs. The difference in the 
two solutions is apparently due to the differing nature of the schemes themselves as 
regards dissipative characteristics and the hke. 

The final case considered was a full Navier-Stokes rerun of what, for the euler 
equations, was a supercritical case. All grid parameters, airfoil geometry etc. were 
kept the same. The free stream mach number was increased to 0.84. MacCormack's 
y-direction smoothing was utilized. This case was run using fixed implicit time step size 
(0.4 X 10"^) at an expHcit courant number of 0.9 (dt =0.365 x 10"^) which results in 
an impKcit courant number of 0.985. The free stream unit Reynolds number was once 
again 200,000 per foot. At this low value no shock wave was present in the viscous 
solution. Full field contours of pressure, velocity vector magnitude, unit mass flow 
rate and mach number are shown in flgures 114-117. Figures 118 through 121 show 
expanded plots of the region near the airfoil. Figures 122 through 124 show the plane of 
symmetry distributions of pressure, mach number and density. Figures 125 through 127 
show expanded (-1.0 < x < -1-1.0) plots of these distributions. Full fleld profile plots of 
density, axial velocity, energy and unit mass flow rate are shown in figures 128 through 
131. The profiles are smooth and the viscous layer is clearly shown. The density 
residual time history is shown in Figure 132. The log of the residual monotonically 
decreases to a value of -4.4. It is seen that the slope of the curve is still negative at 
the point where the calculation was stopped. As in the case discussed earlier the airfoil 
surface pressure has converged in about half, in this case 2000, the number of iterations 
required for field convergence. The machine time to reach 2000 iterations is 29 minutes. 
The euler solution surface pressure distribution and field pressure contours are shown 
in figures 132 and 133 for comparison with the present Navier-Stokes solution. 

7. CONCLUSIONS 

Three classes of laminar viscous flows have been solved in the present work. 
Namely, a normal shock wave propagating in a supersonic free stream, an obhque 
shock-laminar boundary layer interaction and laminar airfoil flow. This work repre- 
sents the first time full pseudospectral numerical methods have been utilized to solve 
the full time dependent, compressible Navier-Stokes equations of motion for airfoil 
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flows. The purpose of the present work was to develop a method to accelerate the 
convergence o£ the author's explicit (full pseudospectral) Navier-Stokes code, reference 
8. To that end, MacCormack's implicit scheme was incorporated into the code. The 
implicit code was checked out against a generic laminar flow problem, the normal shock 
wave boundary layer interaction flow, and worked well. Results for this problem clearly 
showed the effect of grid resolution. At 64x16 grid resolution the solution converged 
in 800 time steps at 200 cpu seconds of CRAY-XMP/24 machine time. At 64x32 grid 
resolution, 3200 time steps or 24 minutes of machine time were required. The difference 
being solely due to the extra constraint on the time step size imposed by the addition 
of points in the vertical direction. The ratio of the time step sizes actually used was 
approximately equal to to 4, the ratio of the time steps required for convergence for the 
two solutions. This with the respective time steps based on an implicit courant num- 
ber of 2.0. The implication of all of this is quite clear. While for this relatively simple 
problem the advantage of the pseudospectral approach (requiring only few grid points) 
is clear, the overall point is that it would be more efficient for the more complicated 
general problem to have nm the solution at the lower number of grid points first. Then, 
at an appropriate point (density residual reaching some pre-set trigger value for exam- 
ple) interpolating the solution to the larger grid and resuming. Multigrid techniques 
do this and future work will be directed in determining the utiUty of such methods in 
the context of the pseudospectral environment. 

The second flow treated in the present work was the oblique shock wave laminar 
boundary layer interaction flow treated in Reference 8 with the explicit code. This case 
was re-run here to detennine the beneflts of using the impUcit code. All conditions 
were kept the same in order to accurately compare the two codes. The explicit code 
required 25,000 iterations at a cotirant number of 2.5 based on the global fleld minimum 
time step size and used 5 hours of CRAY-XMP/12 machine time. The impHcit code 
required 11,000 iterations at a courant number range of 2.15 to 3.0 (recall this case 
was performed with fixed impHcit time step size) and used 2.47 hours of machine time 
on the NRL CRAY-XMP/24. From the point of view of machine time, the utilization 
of the implicit procedure developed by MacCormack was a complete success, cutting 
the machine time to reach convergence in half. The shock waves and compression fans 
are more sharpie resolved with the impHcit code due to the smaller artificial damping 
reqtiired to maintain nimierical stabiHty. There were however differences between the 
expUcit and impUcit solutions. The major one being that the plateau pressure was 
more overpredicted with the impHcit code than with the expHcit code which essentially 
matched the experimentally measured surface pressure distribution. At this point it 
appears ,and this is only a supposition, that the inherent numerical nature of the 
impHcit procedtire is responsible. If this is true, then the only way to implement it 
would be to nm the impHcit code to near convergence and then complete the run with 
the implicit portion of the code turned off. • 
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The third and final case treated herein was the laminar circular arc airfoil. The 
subcritical (free stream mach number of 0.70) and supercritical (free stream mach 
ntmaber of 0.84) cases solved for were selected as generic cases to determine how the 
viscous pseudospectral code would respond to a solution of a flow over a non planar 
geometry with a resulting non zero axial pressure distribution. While the imphcit code, 
run in aji explicit manner took 73 minutes of machine time, the implicit run took only 
37 minutes. At the low value of free stream unit Reynolds number selected (200,000 
per foot) the euler supercritical case was no longer supercritical. Of course at a more 
physically meaningful value of 2 or 3 million this would not necessarily be the case. 

In simomary then, the imphcit procedure incorporated into the author's explicit 
pseudospectral Navier-Stokes code does indeed reduce significantly the machine time 
required to obtain numerical convergence. Questions, however remain as to its actual 
usefulness since the implicit solutions differ from the explicit solutions. As a matter 
of implementation the imphcit procedure could indeed be shut off prior to final con- 
vergence. The remaining portion of the calculation completed exphcitly. However, a 
possibly more promising avenue of research Hes in the incorporation of multigrid tech- 
niques into the pseudospectral code. This offers a potentially much larger payoff. Work 
is currently proceeding along these Unes. 
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Figure 1 - Full Field Pressure Contours 
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Figure 2 - Full Field Velocity Vector Contours 
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Figure 3 - Full Field Unit Mass Flow Contours 
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Figure 4 - Full Field Mach Number Contours 
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Figure 5 - Constant Coordinate lines 
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Figure 6 - Surface Pressure Distribution 
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Figure 7 - Residual Iteration Time History 
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Figure 8 - Full Field Pressure Contours 
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Figure 9 - Full Field Unit Mass Flow Contours 
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Figure 10 - Full Field Velocity Vector Contours 
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Figure 11 - Full Field Mach Number Contours 
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Figure 12 - Constant Coordinate lines 
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Figure 13 - Surface Pressure Distribution 
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Figure 15 - Full Field Constant Coordinate lines 
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Figure 16 - Constant Coordinate lines 
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Figure 17 - Constant Coordinate lines 
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Figure 18 - Full Field Pressure Contours 
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Figure 19 - Pressure Contours 
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Figure 20 - Velocity Vector Contours 
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Figure 21 - Unit Mass Flow Contours 
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Figure 22 - Mach Number Contours 
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Figure 23 - Numerical versus Experimental Pressure Distribution 
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Figure 24 - Residual Iteration Time History 
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Figure 27 - Energy Profile 
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Figure 28 - Unit Mass Flow Proiile 
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Figure 29 - Density Profile 
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Figure 33 - Density Profile 

U/Ul  VS.   Y 
XSTfl - 0.025 FOOT 

o" 

fN 

d" 

o 
d. 

-0.5 

Figure 34 - Velocity Profile 
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Figure 35 - Energy Profile 
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Figure 36 - Unit Mass Flow Profile 
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Figure 37 - Full Field Density Profiles 
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Figure 38 - Full Field Velocity Profiles 
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Figure 39 - Full Field Energy Profiles 
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Figure 40 - Full Field Unit Mass Flow Profiles 
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PRESSURE CONTOURS 
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Figure 41 - Full Field Pressure Contours 
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Figure 42 - Pressure Contours 
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Figure 43 - Velocity Vector Contours 
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Figure 44 - Unit Mass Flow Contours 
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Figure 45 - Mach Number Contours 
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Figure 46 - Numerical versus Experimental Pressure Distribution 
(Square Symbols-Numerical Results; Triangle Symbols-Experiment) 
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Figure 51 - Unit Mass Flow Profile 
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Figure 52 - Density Profile 
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Figure 56 - Density Profile 
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Figure 59 - Unit Mass Flow Profile 
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Figure 60 - Full Field Density Profiles 
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Figure 61 - Full Field Velocity Profiles 
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Figure 62 - Full Field Energy Profiles 
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Figure 63 - Full Field Unit Mass Flow Profiles 
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Figure 64 - Full Field Pressure Contours 
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Figure 65 - Pressure Contours 
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Figure 66 - Velocity Vector Contours 
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Figure 67 - Unit Mass Flow Contours 
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Figure 68 - Mach Number Contours 
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Figure 69 - Numerical versus Experimental Pressure Distribution 
(Square Symbols-Numerical Results; Triangle Symbols-Experiment) 
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Figure 70 - Pressure Contours:  Explicit versus Implicit Results 
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Figure 71 - Pressure Distribution:  Explicit vs. Implicit Results 
(Square Symbols-Numerical Results; Triangle Symbols-Experiment) 
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Figure 72 - Mach Number Contours: Explicit vs. Implicit Results 
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Figure 73 - Full Field Constant Coordinate lines 
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Figure 75 - Constant Coordinate lines 
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Figure 76 - Full Field Pressure Contours 
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Figure 77 - Full Field Velocity Vector Cont ours 
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Figure 78 - Full Field Unit Mass Flow Contours 
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Figure 79 - Full Field Mach Number Contours 
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Figure 80 - Pressure Contours 
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Figure 81 - Velocity Vector Contours 
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Figure 82 - Unit Mass Flow Contours 
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Figure 83 - Mach Number Contours 
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Figure 84 - Converged Euler Solution 
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Figure 85 - Surface Pressure Distribution 
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Figure 86 - Surface Mach Number Distribution 
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Figure 87 - Surface Density Distribution 
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Figure 88 - Surface Pressure Coefficient Distribution 
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Figure 89 - Surface Mach Number Distribution 
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Figure 90 - Surface Density Distribution 
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Figure 91 - Full Field Velocity Profiles 
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Figure 92 - Full Field Energy Profiles 
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Figure 93 - Full Field Unit Mass Flow Profiles 
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Figure 94 - Residual Iteration Time History 

74 



»J     tf^:.' 1 -'       , " i.'.-SIB,- 

PRESSURE CONTOURS 
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Figure 95 - Full Field Pressure Contours 

VELOCITY VECTOR CONTOURS 
Hl-0.70, REl-200K/rr, GRID:   128 X 32,   lTLOa-3 

s-5.0 5.0 

Figure 96 - Full Field Velocity Contours 

75 



RHOMVVEC CONTOURS 
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Figure 97 - Full Field Unit Mass Flow Contours 
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Figure 98 - Full Field Mach Number Contours 
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PRESSURE CONTOURS 
M1-Q.7Q,  REI-200K/FT, GRID:   128 X 32,   ITLQa.-3 

Figure 99 - Pressure Contours 

VELOCITY VECTOR CONTOURS 
Ml-0.70,  REI-2Q0K/FT, GRID:   128 X 32,   ITLOa-3 

Figure 100 - Velocity Vector Contours 
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RHOKVVEC CONTOURS 
HI-0.7Q, REI-200K/rT, GRID: I2S X 32, lTLCia-3 
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Figure 101 - Unit Mass Flow Contours 

MflCH NO.   CONTOURS 
Ml-0.70, REl-2Q0K/rT, GRID: 128 X 32, lTLOCL-3 
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Figure 102 - Mach Number Contours 
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Figure 103 - Surface Pressure Coefficient Distribution 
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Figure 104 - Surface Mach Number Distribution 

79 



SURrflCE DENSITY DISTRIBUTION 
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Figure 105 - Surface Density Distribution 
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Figure 106 - Surface Pressure Coefficient Distribution 
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Figure 107 - Surface Mach Number Distribution 
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Figure 108 - Surface Density Distribution 
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RHO/RHOl VS. Y 
MI-0.70, RC1-200K/FT, GRID: 128 X 32, ITOCL-3 
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Figure 109 - Full Field Density Profiles 

U/Ul  VS.   Y 
m-0.70,  RE1-200K/FT, GRID:   128 X 32,   ITOCL-3 

-0.55675 0.65740 

U/Ul 

Figure 110 - Full Field Velocity Profiles 
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Figure 111 - Full Field Energy Profiles 
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Figure 112 - Full Field Unit Mass Flow Profiles 
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Figure 113 - Residual Iteration Time History 
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PRESSURE CONTOURS 
Ml-0.81,  REl-200K/rT, ETFI-O.OS,  GRIQ:   123 X 32 
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Figure 114 - Full Field Pressure Contours 

VELOCITY VECTOR CONTOURS 
MI-0.81, REl-2Q0K/rT, ETfl-O.OS,  GRIO:   128 X 32 

-5.0 
5.0 

Figure 115 - Full Field Velocit Vector Contours 
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Figure 116 - Full Field Unit Mass Flow Contours 
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Figure 117 - Full Field Mach Number Contours 
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Figure 118 - Pressure Contours 
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Figure 119 - Velocity Vector Contours 
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RHOxWEC CONTOURS 
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Figure 120 - Unit Mass Flow Contours 
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Figure 121 - Macli Number Contours 
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SURFACE CP DISTRIBUTION 
f11-0.81, REI-2Q0K/rT. GRIO: 128 X 32, ITLOCL-3 
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Figure 122 - Surface Pressure Coefficient Distribution 
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Figure 123 - Surface Mach Number Distribution 
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SURFACE DENSITY DISTRIBUTION 
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Figure 124 - Surface Density Distribution 
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Figure 125 - Surface Pressure Coefficient Distribution 
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Figure 126 - Surface Mach Number Distribution 
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Figure 127 - Surface Density Distribution 
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RHO/RHOl VS. Y ■ 
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Figure 128 - Full Field Density Profiles 
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Figure 129 - Full Field Velocity Profiles 
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EN/EN I  VS.   Y 
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Figure 130 - FuU Field Energy Profiles 
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Figure 131 - Full Field Unit Mass Flow Profiles 
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Figure 132 - Residual Iteration Time History 
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SURFACE Cp DISTRIBUTION 
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Figure 133 - Euler Solution Surface Pressure Distribution 
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Figure 134 - Euler Solution Pressure Contours 
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